AD-AQB7 521

UNCLASSIFIED

I e |

KRANNERT GRADUATE SCHOOL OF MANAGEMENT LAFAYETTE IN F/6 12/1
A MODAL LOGIC FRAMEWORK FOR AN A.l. PLANNING SYSYEM. (U)
JUL 80 R P MCAFEEs A B WHINSTON DAAG29~79-C-0154

ARO=16231.,4-EL NL

v e R LT e

(i

of SECURITY CLASSIFICATION OF THIS PAGE (When Date Entefsc)

REPORT DOCUMENTATION PAGE ~~—

BEFYRE COMPLETING FORM

1. REPORT NUMBER 2. GOVY ACCESSION NO.

ADrhAog7524

4. TITLE (and Subtitle)

| é A MODAL LOGIC FRAMEWORK FOR AN A.I,

PLANNING SYSTEM ,

3. REC CATALOG NUMBER

. TYP COVERED

Technical r& .

6. PERFORMING ORG. REFORT NUMBER,
Contract No, DA79C0154

R. PrestonfMcAfee _ / |

-
o)™ e v | JARGAG-7% C- #15%) |
Andrew B, inston . 4
. NAME AND ADDRESS e 10. ::ggI.AaOEA.KEss:‘TT.NPUI.‘O.J!!::f. TASK

rdue University
Krannert Graduate School of Management
West Lafayette, IN 47907

11. CONTROLLING OFFICE NAME AND ADDRESS

U.S. Army Research Office
Post Office Box 12211

NC 27709 ~

18, SECURITY CLASS. (of thie report)

unclassified

TSa. DECL ASSIFICATION/ DOWNGRADING 1
SCHEDULE ’

Apwroved for
unlimited,

Public releage; distribution

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, it different lsom Report)

T MR MR i S s SIS 1 s

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of
the authors and should not be construed as an official department of the

Army position,. policy, or decision, unless so designated by other
documentation.

19. KEY WORDS (Continue on reverse side if vy and identily by block number)
\\]
20. Ai(t,ﬂA::f (Continue on reverse side it y and identify by block number)

A formal dnvalopment of plaanning systems is constructed in this paper. N
The problem solving system is developed in the framework of a modal logic
and the concept of weakest precondition is introduced to guide the solution
procedure. The procedure is a generalization of several well-known prlblem
solving algorithms. Moreover, there may be some gains in practicality of the

algorithm resulting from this extension, which is illustrated by an example.

_COPY

T T

D e -

OO FILE

FORM
JANTY

EDITION OF 1 NOV 68 IS OBSOLETE
- $/N 0102-014- 6601 |

0D, 473

L L0 S

L.

o el R

80 8 1

0

X Wt F1.

A MIDAL, LOGIC FRAMEWORK FOR AN A.I. PLANNING SYSTEM

R. Preston McAfee
and

Andrew B. Whinston

Krannert Graduate School of Management
and
Department of Computer Science

Purdue University

* The authors gratefully acknowledge the theoretical and editorial assistance
of Fran Berman and Mike Odonnell in the preparation of this paper. Any
errors contained herein ara2 the responsibility of the authors.

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED [W THIS REPORT ARE THOSE OF
[HE AUTHORS AND SHOULD NOT BE CONS'RUED AS AN OFFICIAL DEPARTMENT OF THE
ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER .
DOCUMENTATION. 1

B e R P TR RO S S SR

N * ¥
{ it 8 ‘
4 “q e i et

PP AR

Abstract

A formal development of planning systems is constructed in this paper.
The problem solving system is developed in the framework of a modal logic and
the concept of weakest precondition is introduced to guide the solution
procedure. The procedure is a generalization of several well known problem
solving algorithms. Moreover, there may be some gains in practicality of the

algorithm resulting from this extension, which is illustrated by an example.

~Aocession For

TNTIS Glua&kl
poc TAB

ynammounced
JustifiCJtlon

Diﬁtﬁlbgliggl""“_-——-.
" pwailability Codes
Avalland/or.

spec al

pist.

..<,,,<

Introduction

In this paper, we consider formalizing problem solvers for predicate
calculus expressions. Many of the problem solving systems in the literature,
while often ingenious, are essentially variations on the Resolution Principle [57.
In an ad hoc way, most of these have introduced operations over predicate
calculus models, and devised some method of machine search over the operators.
It is precisely these features of the literature that are dealt with in this
paper.

Our first action is to demonstrate that STRIPS [23] programs are
examples of programs in the formal language Dynamic Logic [37. This is
a useful feature in itself as it allows us to examine STRIPS with the
analytical tools a formal language provides. We then can observe that our
operators are not limited to STRIPS type operators. A much larger class of
operators becomes available via this formalization. These operators may
gimulate actions, as in STRIPS, or may only be calculations, such as
multiplication.

An important advantage of a formal theory of operators is the
analytical tools available. In this paper we focus on Dijkstra's [1]
weakest preconditions as an excellent example of operator analysis. These
weakest preconditions permit us to evaluate in advance whether application of
an operator will achieve a goal. Because this is a formal criteria, it
is naturally embeddable into a machine for automated decisions. Another
useful feature of t-e formal analysis is the ability to prove results about
the system. In particular, it was possible that the STRIPS approach,
involving only concatenations of operators and not allowing for unions or
iterations, was a restriction of a system involving these latter operations.

In this paper, we prove that concatenations of operators is suificent for

II.

r

solving STRIPS type problems. The evaluation function [27 of STRIPS is
an ad hoc method of determining whether or not a given operator is appropriate.
We formalize this by defining a measure of distance, called a pseudometric,
over the space of predicate calculus models. In most cases this allows for
increased efficiency in the decision process. Since this simulates the
approach of a human decision maker, it is a useful tool in mechanized problem
solvers. Humans have some notion of what models are close to one another, and
formalizing this may allow the machine a similar faculty. Moreover, pseudometrics
have been implicitly assumed in many of the extant problem solvers.
There is some advantage to their explicit use, as shown in McAfee and Whinston [4].
.1 The Guarded Commands Language

In order to extend and formalize STRIPS, we may embed STRIPS inside a
larger formal language. Although STRIPS operates within the context of
predicate calculus, STRIPS is essentially beyond predicate calculus,
because its operators are nog tautological proof procedures.
STRIPS operators are modal operators, i.e. their application reflects a

change of states. For this reason it is sensible to embed STRIPS in a

language capable of expressing facts abouts state changes. As we shall see,

a subset of Dynamic Logic [3} called the Guarded Commands language [17] makes
an excellent choice for such a language. ;
The guarded commands language is a strict extension of predicate
calculus, and the set of terms is identical in both. :
The set of programs, PGC, for Programs in the Guarded Commands language,
are defined inductively as follows. We have restricted the origional
formulation to deterministic programs. Let e be an; term, P and R

be predicate calculus formulas, and x a variable. Then

1) ABGRT € PGC ¥

2) x e e € PGC, (assignment)

3) for o, B, € PGC, o; B € PGC (concatenation)
4) form, B € PGC and predicate calculus expression P,

P?; o U P?.;8 € PGC (program union)

3 T — “

This is actually a subset of Dijkstra's original program set, limited to

deterministic programs. Determiniem is a useful assumption that will cost

little, 1{f any, generality.

The programs are intended to be interpreted with variables ranging
over the real numbers and the standard meaning of any functions and
constants necessary, e.g. +, ., 0, 1. We assume there is a well defined
interpretation of predicate symbols. The predicate calculus quantifiers

and connectives are all given their standard interpretations. The semantics

of the program induction are given as follows:

1) Abort ‘

2) Assign term ¢ to variable x

3) do o then B

4) If P do ¢ else B

5) While Pdo x

Observe that do loops may be constructed using iteration:

x¢+0; (x<nla; xex +1) *; x >n?

is a program whichexecutes &« for x = 0,. . . n

For a more specific example, consider the PGC program

1el; Jje0; A<n?; Jej4m 1ei +1)*; i>n)?

This program adds m to j n times, that is, it calculates mn. Actually,
in the STRIPS enviromment, we need only begin with a finite set z of
This forms

programs (operators) from which we may compose new programs.

the set of Elementary Programs E , which is defined inductively below:

1) z;E

2) o, By € E then o3 BE E

3) «, B, EE and P a first order statement, then (P75 o U P73 B) €E

4) o €E and P a first order test then (P?;a) *; 1P € E

The semontics are the same as in PGC.

II.

Given a set of programs E , a sub-language of DL, called PDDL-GC, is defined

similar to the predicate calculus induction:

1) any predicate calculus expression is in DL
2) foro €E , and DL expressions P, R, then -\P, PyR (¥x)P and <y> P ¢ DL
The semantics of these expressions is the same as in predicate calculus
except for < o > which is undefined in predicate calculus. < o > P is inter-
preted to mean "o terminates with P true', that is, after operating o, P
will be trye.

If o corresponds to a STRIPS operator, then P 4+ < ¢ > R means that if
P is true, then operation of o will make R true. It is very useful to
have such expressions formally expressible, as they may be very useful in
guiding a STRIPS search. Through such expressions, we may explicitly
represent information on how to procede to make R true. This allows us
to replace STRIPS' "evaluation function" [2)} with an organized, formally
stated and automatable body of knowledge about what works to prove goals.
However Dijkstra's formalism possesses considerably more power.
.2 The Weakest Precondition

The Guarded Commands Language was designed to make program verification
possible and simple. Dijkstra's original purpose was to establish conditions
under which a program ¢ will terminate with a predicate calculus expression
R true, i.e., what implies <« ¢ > R? He demonstrated that in the domain of
GC, and hence all subprogram sets, there is a weakest precondition (wp) expressed
in infinitary predicate calculus so that wp(y, R) = < o > R. Thus we may embed a
fragment of the program verification problem inside predicate calculus, where
we have the Resolution Principle [5] and other first order theorem provers
at our disposal. Dijkstra provides these wp expressions via the induction

below, although our notation remains that of Harel [37.
wp (abort, R) = false

wp (x ~ e, R) - R® Where R: is R with x's replaced by e's and all bound
x

variables of R appearing in e are renamed.

wp (o; 8, R) = wp (o, wp (8, R))

wo (P?7: w1t IP?7; B, R) (P o wp (o, R)) A (P 4 wp (8, ®))

L SUU N

2

s -—-..&:“_‘tf“— -

5 1 s

LI e A e

wp ((P?; &)*; 71P?, R) sn\Zo H where H_

TP A R

m

H P H
and ntl T A wp(a, n)
Observing that Hn corresponds to the condition implying iteration of the express- é;
ion(P?; o) n times makes R true, one may quickly establish that all of these equivalences

hold. These equivalences provide a method of constructing the weakest

precondition implying for o € PGC, < o > R, for first order R.
In general we cannot expect the weakest precondition of programs
involving iteration to have predicate calculus equivalents. V H_ is
an expression in an infinitary version of predicate calculus,n:gd outside
of ordinary predicate calculus. The formulation of the weakest preconditions
demonstrates that for any program o without iteration, < ¢ > P has a
predicate calculus equivalent. We will argue that for a problem.solving
environment where the initial state is given and fixed, iteration is
unnecessary. In this way we will avoid the need to work in an infinitary
environment. Clearly, for many types of program analysis, it is necessary
to include iteration.
2.3 STRIPS Operators
The operators of STRIPS change world states in an organized fashion. Any STRIPS |
operator ¢ is given by an ordered triple of sets of predicate calculus expressions
< { Pl' . Pk}, {Al,. . e Am}, {Dl,. . ey Dn} >. The application of ¢ has
a precondition, which is that P = P1 A P2 Ae « - A Pk holds. If P is true,
then operation of ¢ results in a new world state where the expression
A = Al As o « A Am is asserted and Dl" . oy Dn are no longer asserted.

STRIPS presumes that nothing else is changed in the world state transition,

except of course that new implications may be derived.

To model STRIPS, we must embed the changes in the truth values of
expressions into changes of variables. This observation reveals a direct method of

such an embedding, that is, provide for variables whose values are truth values of

expressions.

C - .s o TR e . .
s S b P AR RA e o] 1rn o ¥ e L L . "-{“”"‘:””’ ‘;"; “",‘ ;,% _3.7 }‘ r
A A N " R T

. g el ey

Thus, for each predicate calculus expression E, we define a variable

b whose semantic interpretation is

ug = 1 indicates E is asserted true

bg = -1 indicates E is asserted false

g ¢ {1, - 1} indicates neither E nor TE is asserted.
We may inductively build on this definition

1) PqE = Mg
1M =1or"F =1
3 11) ME Vv F =}-1"E = -1 and "F = -1

‘% 0 otherwise

i-’ iii) 14f 3x pp (%) =1
-1 1£7(Ex) py (1) = 1
fy quE = (PE
‘ o otherwise
Wp = X Is notation for EQUAL (uE, x), the equality predicate. We also establish

a rule of precedence: If hg € {1, -1} and it is proved that wp = 1, then

' wp ¢ 1. This rule of precedence should be used to adjust for

new information after any theorem proving, that is, after proving an expression E,
make sure to assign by + 1. The STRIPS program ¢ is very easy to incorporate
into DL with this formalism. Let

o= Py, el unl,b 0; « . . bp, 0 UP? ABORT.

Then ¢ tests whether the precondition P holds, if so, it makes

A= A1 Ae s o5 A An true and makes Dl’ . e ey Dn unasserted. Otherwise it

fails.

A STRIPS gystem is merely a collection of operators of STRIPS type. In
the notation of section 2.1, we let X = [STRIPS operators written in program
form}. The set of admissable programs is then E.

Thus we may embed STRIPS operators into the GC formalism, A STRIPS

! ; problem consists of an initial state, expressed in predicate calculus,

and a goal. The goal is a predicate calculus expression R. The intent of

s o i 4o AL S O A A s S

STRIPS is to find a sequence of operators Qe+ s SO that operation of this
m

sequence results in R being true. This is converted into GC by first

observing that a predicate calculus initial model is an assignment of terms
to the p variables. The goal is the same expression R. The problem

remains to find any sequence of programs (operators) where wp (31;. . ';Bi’ R)

is truein the initial state.

In section 3, we shall develop the mathematics of GC to suit our
program synthesis, and not program verification, needs. This will result in
the construction of a GC problem solver. In Section 4, we shall return to

STRIPS for a comparison.

III. 1 Some Mathematical Results.

In order to show that the planning system in the following section
operates in the manner intended, we need some analysis of PDDL-GC. Although
many of the sections results apply to other varieties of DL, we will assume
PDDL-GC throughout.

Lemma 1: Let ¢, B be GC programs and P = wp (v, R). Then if there exists

a firsc order test Q? so that wp ((Q?; o 1)1Q; 8),R)is true, we have

wp ((P;o U TP?; B).R) is true.

Proof: wp ((Q?; o« !} 7Q?; B)R) = QA » wp (&, R) A Q » wp (B, R) was previously

noted. This implies Q » P, and by contrapositivelP -+ Q. Therefore

P=w (0, R) » wp (v, R) and 7P 4 7Q 4 wp (B, R). Consequently

wp((P?; o1 IP?; B)R) = P a2 wp (o, R) AP o wp (B, R) is true, as desired.

: Lemma 2: (Dijkstra [1 Dwp (@, Pv Q) = wp (&,P) Vv wp(a,Q)
= wp (o, PAQ) =wp (2,P) A wp(a,Q)
‘ Lemma 3: LetP = wp (o, R). Then wp (P?; o U TP?; 8, R) = wp (a, R) v wp (8, R) J
Proof: wp (P?; o U 1P?; B, R) = P 4 wp (@, R) AVP 5 wp (8, R)

wp (o, R) » wp (o, R) Avwp (o, R) » wp (B, R) -
awp (o, R) » wp (8, R) L
o @, RV B, R |

wmon

’ -——-rm»;-...-._,. e e
|
]

it

L o L w(h < A e A TR G 8 DRI R T AR
i . i y PRGNS . . . i oz € aen o " aag
i . .\ . N & 3 s S Sl - i ” b : '

i

Lemma 3 demonstrates that, under the hypothesis P = wp (v, R),
U functions exactly like boolean disjunction.
Lemns 4: Let S = wp(a, P) and suppose o terminates.

Then wp(e; (P?;8 U TP?54), R)

i}

wp (5?3038 U1S%3v,R)
Proof: wpla;(P?;8 U TP73v), R) = wpla,wp(P?58 U1 7PT5y, R =
wpla, P =+ wp(8,R) AP a4 wply, R)) =
wpla, P =+ wp(8,R)) A wply, TP = wplv, R)) =
wpla, TP vV wp(8, R)) A wpla, P Vwply, R)) =
wplar, TP) Vv wpla;B, R) A wplasP) Vv wplosy, R) =
18 Vv wp(a;B, R) A SV wplasy, R) =
S » wpla;B,) A1S =+ wplasy, R) =

wp(S?; 3B U1S%sasy, R)

Definition 5: §7;& U (ISAT)?;w U (SATIT)I?38) = S?;e¢ U TS?7; (T?;¢ U TVT7;8)

This rule may be used recursively to identify the meaning of a union of
?; ?; . ?3 .

n programs P1 N U P2 5, u. U Pn ;oo Also note that then

restriction on such unions is exactly i) P. v P v . . .v P is a

1 2

tautology and ii) The Pils are pairwise inconsistent. Any finite union

satisfying i) and ii) is a PDDL-GC program.
Lemma 6:
1] wp((P?;0 UP?;8);(R?;v U R?58), S) =
wp ((PA wp(a,R)) 2505y U (PA wp(o, TR 75058 U

(A wplay R 7385y U CIPA wp(B, TR)) 75856 , S)
ii] wp(P?;(R?;0 U 1R?;8) U WP?;(T?5v U IT?758 , S) =
wp(PAR? ;& [} PA TIR?7;8 UITPAT? ;v UTPATT?;8 , S).

The proof of lemma 6 is straightforward .

Lemma % Any PDDL-GC program formed by composition of base programs using ||

and ; (without iteration) may be equivalently expressed in the disjunctive

IWP(Q,WP) =z Jwp(a, P) if and only if o terminates. See Dijkstra [1].

Pope AR T

e e

normal form Pl?;oi U Pz?; @y U. « WU Pn?;an, where @ is a concatenation

8 i,; 5;; « o o3 B%iof base programs, and Pi is as in Definition 5.

Proof: Using lemma 4, we may drive base programs inside unions. Using

6 and 5, we may rewrite unions concatenated with unions and unions of unions
into new unions. This is repeated until the disjunctive normal form is
established., The new program is equivalent, at least in terms of input/-

output behavior, because the wp's of each program are identical.

This result is obvious in the sense that, by expanding the computation
tree of any program without iteration, there are only finitely many
branches and thus there must a condition Pi that determines whether the
computation proceeds down the ith branch. However, in the process of
proving lemma 7, we have provided an algorithm for calculating Pi' This
is where the usefulness of the vesult lies,

Suppose and initial state, given by a set of predicate calculus axioms,
is given and fixed. Then it is clear that, for any program o if < o > Q
holds, then any iterations operate finitely many times and there will be

a sequence of base programs 8.,. . .,B, such that < 8,;. . .; > Q is true.
1 k 1

B
This yields:

Observation 8: 1In the STRIPS environment, where initial states are fixed,
concatenation of base programs is sufficient to create a solution, if

one exists.

Of course, iteration and union of base programs makes an interesting topic
for A.I. research, but the STRIPS search method is sufficient. Because it
is in general undecidable how many iterations are necessary to achieve a

goal, this creates a difficult research issue, and is beyond the scope

of this paper.

It e NPT

pEsr-apas

A ———— s

Theorems analogous to Lemmas 1 and 3 arise in the general union case.
Lemma 9: let B = wp (@, R), P = TBA AR AP @)y R), i=2,, . ., n-1

and Pn - P1 A+« A Pp-l. Then if there are first order expressions Ql' PR ’Qn

Such thatwp(Ql?; U Qz?; U ... UQ7" « n'R) 1is true, then
wp ((Pl?; al Ue « U Pn?;an), R) is true.
The proof 1s analogous to the proof of Lemma 1

Lemma 10: If Pl’ o . ey Pn are chosen as in Lemma 9, then

wp (P17; o U« « P2, R) = wp @), B) vwp (@) R v. . .vwp (@, » R
Proof: It is easily demonstrated that

2. 2. -
wp (P1°’ o e o WU Pn" o R) = Pl -+ wp (al, R) A Pz -+ wp (az, R) A.. . APn4 wp (qn,R),
from definition 5. For all i < n, we have Pi = 1P A 1P2 Ae o« o A 1P1-1 A wp (¢, R)
Therefore for i < n, Pi -+ wp (ai’ R) is clearly true, and thus

?. ?. = =
wp (Pl" o Ue o WU Pn" o R) = P s wp (an, R) = WPV owp (an, R)
= 7(‘1P1 A'1P2 V.. WA 7Pn_1) vV wp ("n’ R) = P1 v P2 Ve o .V Pn-l V wp (°’n’ R).
Observe, for sentences A and B, since A s (ApAB) v A
Av (TMAB) = AV (AAB) v (1AAB) = AV ((A VvTA) A B) = AVB
Letting A = wp(e,R) and B = wp(az, R), we have
P, VP, =wp (ryl, R) v (7 wp (cyl, R) A wp (032, R)) ® wp (o:l, R) v wp (qz, R).
Suppose for induction that P1 1% P2 V. . .ka = wp (al, R) v. . .v wp (ak, R)
This holds for k = 2. let A = P1 V. . WV Pk and B = wp (ak+1’ R)
Then P1 Voo WE 5(91 Ve . 'VPk)V Pk+1’—"(Pl V. . WV Pk) vV OF A . ./\‘)Pk/\ wp (°’k+1’ R))
= (P1 Ve o .V Pk) V((‘\(P1 Ve o WV B A wp (°’k+1’ R) =
By Ve o VPRIV WP (s B =wp (o, B V. o o vwp (o, R Vwp (4p> B
For any k < n - 1, Therefore letting k = n - 1, we have
P1 Ve o WV Pn_1 = wp (al, R) V. . . Vv wp (an-l’ R).

Therefore wp (Pl?; o U. . WP o) =P vo. .vP , Vwp (@, R)

1) n n 1
= wp (al, R) v. . .V wp (an, R) as desired.

4 RIS AL AN RS LTI T A R A b A o TR D LIRS 1 94 2 e k555 A BT e i o . " o " b 2

11

Suppose we have an initial state 1, a first order goal R, and some
first order facts in our knowledge base which are true in all legal states.
Denote the last set F, Facts about the state Iare all facts concerning the
assignment of terms to variables.

Now we might try to prove R from F, inserting knowledge of assignments
of I. There is an algorithm, the Resolution Principle, [5], specifically
designed for doing this. The Resolution Principle checks a first order
expression R against a body of facts F by assuming R A Fand seeing if this is incon-
sistent, If 7RAF is inconsistent, then ¥ proves R, and R is true with respect to F.
Resolution operates with two parts, one a theorem prover with respect to
predicétes, the other a unification principle that assigns terms to variables
attempting to facilitate the theorem proving. In the DL context, unification
changes states. Because we wish to control our states, and indeed unification
might move us into an illegal state, we will operate resolution without the
unification principle. If the unification principle is desired, it may be
added as a base program, so there is no loss of generality from this alteration.
In the process of resolution, we will, however, allow assignments of the state
I to variables to be inserted for those variables. This limited unification,
together with the theorem prover, might be termed resolution with respect to
the state I. When we refer to resolution in a DL context, we will always mean
resolution with I - unification,

Now in attempting to prove R from F inside I, we may operate resolution,
attempting to prove a contradiction from 1R A F A I, where I denotes both the
state, and the first order characterization of that state (e.g. if X « e in I,

then EQUAL (x,e) characterizes this assignment, where EQUAL (x,y) holds if and

only if x = y).

Y R

»~Mm‘«\‘"“ TR

+ iy s nne - 2=

o oms 2

e A NS i e T kg WO Al e

ST

12

If an inconsistency 1is found, the problem is solved and we need not apply
programs, as R is already true. So suppose resolution operates for a long time
and no contradiction is uncovered. Let A be an assertion proved by resolution.
In the next section we shall give criteria for which expression A to choose.

In the proof of A using resolution, a certain number of facts from I were used.

Let this set be Bl’ « .

the proof of A. Finally, suppose R itself is a subgoal, R = wp (o. Q) and

. Bk. These are called the state depenents facts in

o is a proposed program for making Q true (which may itself be a subgoal). So
if R is true, then operation of o makes our desired result Q true.

Lemma 11 Suppose there is a program 8 such that A -+ wp (8, Q).

Then wp ((R?; « 1) R?; 8), Q) is true.

Proof: wp ((R?; ~ UJ TTR?; B8)Q) = 3 wp (v, Q) vwp (g, Q

Rvw (8, Q
If R is true, then R v wp (B, Q) is true. If IR is true, then resolution
proves A is true, which by hypothesis implies wp (B8, Q).
Lemma 12: Suppose there is a program 8 so that

wp (B, Rv (B A. . . A By A TA)) is true. Then

wp (B; o, Q) is true.

Proof: wp (8, RV B A. . .A B ATA) = wp (8, R) vwp (R, B

1 1
is assumed true. If wp (8, R) holds, then wp (B; &, Q) = wp (8, wp (o, Q)

A .ABkAﬂAL

wp (B, R) is true that is, operation of B; o proves Q.

On the other hand assume wp (B, B, A. . .A Bk A18 is true, We know that

1
QRAFABIA. . A Bk -+ A, because Bl’ . e ey Bk are precisely the state
dependent facts used to prove A in the resolution operation. Since by
hypothesis, after operation of B8 we have 31 Ae « oA Bk A1A, and because F 1is

true in all states, we cannot have 7R, Otherwise we would have (AR A F A B1 A

Bk) A 1A implying AATA. As a result, if wp (B8, By A. . - AB ATA) is true,

wp (8, R) is true, which as we saw, implies wp ®|; o, V.

e ety wom

e A e RIS A

e

The interpretation of Lemma 11 is as follows: suppose we operate resolution

trying to prove wp (o, Q) is true. We are unable to prove an inconsistency,
but we do prove an assertion A, The assertion A is the difference between R
and success. Consequently we attempt to handle this difference by adding a
separate case. A sufficient condition, as we saw, for handling this difference
is to find a program 8 so that A + wp (8, Q). The process is not contingent
upon finding such a B, however. We might produce a candidate ¥ for B, and then
extract the difference, handle this case, extract a new difference, etc.

It is in general undecidable if this method converges. Consequently,
one can only note that, if there is a solution, and a backtracking method
is implemented so that any possible concate;ation of base programs is
eventually examined, then the procedure will terminate with a solution. If
there is no solution, then in many instances this will be undecidable.
Undecidability is a fact that we must live with, and do what we can. Of
course, it is advisable to avoid trying to decide undecidable issues.

The reader should also note that there is no problem if resolution is
stopped too early. For suppose R = wp (o, Q) is true, and that resolution is
stopped before an inconsistency arises. Then wp ((R?; o |J 7R?; B),Q) will be
true. This follows as R is true, and hence R?; o U-1R?; B will execute o, and
we assumed R = wp (@, Q) is true. Thus there is no loss from terminating
resolution too early.

The solution method inherent in Lemma 12 is perhaps more appropriate, as '1

it relies on the concatenation and not disjunction of programs. As we

observed in Observation 8, concatenation is a more promising approach, as we

s VSN

can always solve the problem via concatenation of base programs. In Lemma 12,

ey L

A i8 again viewed as the difference between R and success. This time, instead é

III.

14

of attempting to handle A as a separate case (as A 4 wp (B, Q), we havelwp (8, Q) +

A, and 7A implies R true) instead, we attempt to find a program § to negate A.

This would allow us to complete the proof of R, and thus have wp (8; o, Q) true.
Again we may note that even if resolution is terminated before it would have
proved a contfadiction, there is no loss of generality. The predicate wp (@8,R) is truc

so 8 cannot negate R. Consequently, wp (B; o, Q) remains true,

.2 A solution method

The basis of the solution method will be replications of Lemma 12.
We initialize the problem by providing a goal RO, an initial state I, a
set of base programs, and a set of first order truths, F,
Begin the solution method by attempting to prove Ro’ using resolution on F
and state facts I. If R° is proved, then it 1is currently true and there is
no sense applying programs., If Rb is true, halt with this fact. Otherwise,

extract the difference between R0 and success as in Lemma 12. The means of

producing the difference Ao and the state dependent statements Bi,. . .,BE
o

will be discussed later. TFor now, assume we have them. Let

) o)
Q = Ro v (7Ao A Bl A . A By). We select a program e, , which is a candidate
o

for making Q0 true. The means of producing this program, together with the
mechanism for the choice of A, will be discussed later. For now, presume that
we obtain it. Let Rl = wp (al,Qol Observe that lemma 12 implies that if
R" is true, we are done.
The selection of R1 will serve as initialization for a general induction
to show that the solution method preserves the situation that Ri true means a solution
has been found. Suppose we have found R" = wp (an, Qn'l), and if R" is
true, the problem is solved. Operate resolution on R® to see if R" is true.
If we fall to prove Rn, extract a minimal difference An and required state

n
k in the proof of An' Let

n

dependent statements B?, + « +y B

n n n

Q =R v (An A B1 A o o <A BE), and choose a program a, + 1, to be a candidate
n

n+l

for making Qn true. Let R = Wp (an+1’ Qn). Observe that lemma 12 implies

+ n n
1f R" 1 is true, then operacion of o 4 makes R true, and we assumed R true

———ememene

N
VIS

s, ek s - alis™

e e i Amn A Y Y (o Spm o o ey e

15

meant we had the problem solved. As a result, we have preserved the property
that Ri true means the problem is solved. Thus, this is a valid recursion on
the Ri's, moreover, if we reach a state where Ri is true, then operation of
di; ai-l;' . o3 o, H oy makes R0 true, our goal. Hence, the

desired program is oy H ai-l; e . . s ays by iteration of Lemma 12.

This is the basis of the decision procedure. What is left is the formulation of
the choices of An and Ot

There is a natural procedure to gu.de the choice of o, - Because a program
only assigns terms to variables, although perhaps in quite complex ways, the
choice of o is entirely one of finding a program that gives values to the
variables which force"lRn A F to be inconsistent and hence make Rn true. Thus, we
wish to find a program that unifies the literals in a set of expressions, that
is, our program must simulate the most general unifier of the resolution principle.
Because the most general unifier is readily calculable, it serves as a basis for
the choice of - Unification defines the variables which must be altered and even
the manner in which they should be altered in order to prove 7Rn A F inconsistent.
Thus, a natural procedure arises for the choice of o,

This simulation of unification in the choice of programs is not arbitrary.
Resolution is a special case of the problem solving environment described herein.
In Resolution, there is a set of facts and a goal R, to be shown as a theorem
of these facts. Resolution operates by literal elimination, or attempting to
show R directly, and appropriate unification, or assignment of terms to variables.
Resolution is the special case where all programs, or assignments of terms to
variables, are permitted. In this Resolution environment, the most general
unifier serves as a good method of proving R. When we restrict the set of
valid programs and move to the problem solving environment of this paper,

naturally the best choice of programs will emerge from simulating the unconstrained,

resolution situation. Thus, the solution method of this paper yields a model of

problem solving in a more general environment where Resolution is a special case.

A i A o A A A Ao IS sl i I LI -SRI oL P i, 1) Sl

O

- .
i Nl

Le L

———y

16

The choice of An emerges from the Resolution model in a similar fashionm. An
is simply the expression which, when unified, proves a contradiction, or comes as
close as can be to doing so. That is, An is the set of expressions the Resolution
principle would choose to unify and solve the problem with.

The simulation of Resolution can be considered inefficient in the sense that it

provides no information toward avoiding blind alleys. The wp predicates yield some
information, but unless there is a means of evaluating where the weakest pre-
condition, wp(e, R) 1s closer to the initial state than R itself, we will have no
way of knowing if we areheaded in the correct direction. As a result, we will define
such a measure of 'closeness to the goal” in the section on pseudometrics, which
will complete the problem solving system of this paper.

Ag described, this system contains no backtracking. The skeleton of a

backtracking system will be discussed, with the details left to the reader.
Suppose a level n is reached so that no program eliminates a literal from

An' Then we should backtrack to level n-1 before o is applied and

-1

use the next best program an: instead of oy and then continue with the

1
program synthesis. 1If at some point this precipitates backtracking to

level n=0, we can either choose a new difference statement A;, or we can

begin looking at pairs (then triples, etc) of programs o;B to negate Ao.

By observation 8, such a method, as it would eventually check all conjunctions of
base programs, will be complete. This means if a program can be found to

satisfy the goal, it will be found. As we mentioned, if there is no solution

chen this fact will often be undecidable.]

It is probable that a combination of lemmasll and 12 would provide

the optimal search plan. The general difficulty in finding a 8 so that

gl "

A +wp (8, R), coupled with the question of which route (11 or 12) to

Soo

take at any juncture prevents this from being developed here. It is a

€l B

BRI YL S

good topic for future investigation in this area.

e~

III.

3 Comparison to The Resolution Principle
The final observation of this section is that ip af environment with
only the unification program, the system devolves to be a
modification of resolution. First note that in the absence of
other programs, we cannot change states. Therefore there are no
state dependent facts. In order to prove an assertion R, the initial step
was to operate regsolution and then exit with either a contradiction
and success, or a minimal assertion Ao and a set of state dependent facts.
As noted, this set is empty, so we have only the assertion Ao.
Since there is only the unification program o, we set up a
new goal wp (au, Rv 7Ao) = R V'1Ao and attempt to prove that.
This is equivalent to choosing a conjunct of the set of theorems proved
by resolution and specifically trying to negate it, as opposed
to generally searching for a contradiction. If we fail to prove 1A°

(and thus R) with resolution, we take a second difference A1 and try to

prove R v WAO \ 1A1. This will continue until either we prove a contradiction

or we get a new conjunct A2. Because we will be taking progressively more
minimal statements Ai’ we are imitating resolution, only with a focus,

We focus in on statements that seem the easiest to contradict, as opposed

to generally resolving all the theorems of resolution. With backtracking,

(the choosing of a different Ao), this method is approximately equivalent

to the Resolution Principle.

3
L
1
{
H
b
‘

IV. .1 Comparison to STRIPS

The GC problem solver described shares many features with STRIPS, As
with the GC problem solver, STRIPS intially operates resolution to try to
prove its goal., If this fails, it chooses a theorem T resulting from

the resolution and tries to prove it. The theorem T corresponds to A A B. A. . .B

1
in our model. It is a result of the proof which, if made true, forces

the goal to be true. STRIPS then searches for a satisfactory operator, as
does the GC problem solver. Given this operator, it again tries to
prove the new goal. If this fails, it extracts the difference of the new
goal and the current state, and continues. This is precisely what the
GC problem solver does, albeit in a more formal manner. Consequently,
in a STRIPS problem environment, the GC solver simulates STRIPS.
However, there are several differences. The first major difference {is
that the GC problem solver has the ability to use information about the
result of applying operators without actually applying them, in the form
of the weakest precondition. This allows it some vision as to what
branch is promising in the search tree, vision that is denied STRIPS.
STRIPS with MACROPS attempts to cope with this lack of vision by remembering
what was previously a successful path, however, there is no problem in
doing the similar thing with the GC planner and STRIPS still lacks any
vision concerning the application of concatenations of MACROPS. Thus, even in a
STRIPS environment, the GC solver can check whether wp(e, R) is harder to satisfy
than R, and hence whether to apply ¢. 1

A second difference regards unfification. It may be that we declare some

assignments of variables illegal and wish to prevent their occurance.
STRIPS places no restrictions on unification in its operation, while
such limitations are possible in DL, If we wish to rule out x=0 in our L

system, we may merely prevent any operator from ever assigning O to x.

Iv

19

This is one way in which GC has a wider scope than STRIPS,

Another important way is that in GC, we can call relevant data
(a data program is simply x « e, e being the data on variable x) with
a simple program. Moreover we have programs available which are much

more complicated than STRIPS operators.

Consequently, we see that the GC problem solver, while simulating
STRIPS within a STRIPS enviromment, can calculate the results
of its actions before it takes them, allowing it a modicum of "intuition”
about which approach to take. Moreover, it is at home in more complicated
enviromments where calculations and not just theorem proving must be done.
Finally, by Lemma 2.12, we actually were able to prove that STRIPS did
what it claimed, that is, if it found its subgoal true, then the sequence
of operators did make the goal true.
4,2 Pseudometrics
The search for an appropriate program to apply toward a goal may be
directed using the method of pseudometrics {4].
A pseudometric is a distance measure over a space X. It is defined similarly
to the metric of real analysis.
Definition: A pseudometric on a set z fs a function p: X x X - Rt
satisfying
1) p (x,x) = 0 for all x€ X
11) p(x,x') = p(x',x) 2 0 for all x, x' € z
111) plx, x") +p (x',x") 2 p(x,x") for all x, x', x" € z
The difference between a metric and a pseudometric is that we may have
p(x,x') = 0 for x # x' if p is a pseudometric but not if p is a metric.

Because X will be a space of models in our applicationand we do not wish to

distinguish between every model with our measure, we will use pseudometrics.

YR 2 s A Py,

20

We do not wish to distinguish between all models because often there will

be characteristics which are irrelevant. If we do wish to distinguish all
models, then metrics are relevant, and they are special cases of

pseudometrics.

We will characterize the space of models by the first order sentences
that are true in the model. Let Sl" « .y Sn be a finite set of sentences,
and ep s oes oy be nonnegative real numbers called criticality values.
cy is interpreted to be the 'weight" or importance of the ith sentence.
Let Mj, Mk be two models. A clash set ij is defined by
rjk = [i/Si is consistent with one of the models and not the other].

A pseudometric p is then defined by

p(Mj, Mk) -z €1
1€rjk

for any models Mj, Mk. To prove p is a pseudometric, we must establish that

the rules i), 1) and {ii) hold.

i) if Mj = Mk, then Si is either consistent with both or neither. Therefore

= @ and p(Mj, Mk) =Zci =zci =0,
ier ied

l"jk

jk

i1) Observe that I"jk = I"kj as the order of the models is irrelevant.
P Therefore
‘ k i
} ‘ P(Mj’Mk) .Z Ci =z ci = P(M ’ MJ)

, ier i€
i_ jk I‘kj .
moreover, since <:i =20, Z 1 >o0.

i11) Finally given Mo, M and MZ claim o2 _r_:rol U 1‘12
Proof of claim: Suppose i€ FOZ . Si is either consistent with
M° and not with M2, or with M2 and not M°. Suppose the former
holds. Si is either consistent with Ml or not. If Si is consistent
with Ml, we have that it is inconsistent with M2 and thus iGI‘lz. Otherwise
its inconsistent with M1 and not with Mo, and consequently i€ F01. The |

, o . 2,
argument where Si is Inconsistent with M and consistent with M~ is

symmetric. Therefore i€ I‘O2 implies i@ 1"01 u 1“12, and

1"02 - 1‘01 U I‘12, as desired.
Therefore p (Mo, Ml) +p (Ml, Mz) =z o +I o P Z o
1€y 1y, 1€ U Ty,

s}:ci"'Zci 2 Zc1= p(Mo, MZ), and
i€l"02 16(1"01 U I"12)/I"02 161"02
consequently the triangle tnequality holds.

Thus we have shown that the construction of p satisfies the properties of
a pseudometric. Thus p is a distance measure over the space of models. The
distance of M° and Ml as measured by p represents the clash of those models with
respect to the sentences Sl" . ey Sn and the weights ¢, associated with them.

i

The optimal use of p requires the appropriate choice of Si and e We will dis-

cuss this in the next section.

IV. .3 Directing a problem solver i

Suppose we have a goal model in mind MG and a set of sentences Sl, .. .Sn o
-

which are the criteria by which we judge a model. Further suppose the weights o

Cyse » o» € are given. If Mo, Ml are two achievable models, and if ';,

p(Mo,MC Y > p(p},MG), then by the criteria of the pseudometric, Ml is closer to
MG than M° is. This is the sense in which we mean a pseudometric can guide a
problem solver. STRIPS implicitly assumes a pseudometric where ci =1 for all

i £ n. The sentences S, are the negations of the assertions in the goal model.

i
This is easily seen. When STRIPS checks if a model M is close to a goal f
model MG’ it checks whether the assertions of the goal model are proved in !
M. This is equivalent to the negations of the assertions of the goal

model being inconsistent with M, since the negation of an

assertion of a goal model is inconsistent with the goal model. This is

equivalent to checking if I €T, as i € I' if Si is inconsistent with M (and Si is

inconsistent with M S1 being the negation of an assertion of MG). Since

G’
STRIPS does not differentiate the weight of the different sentences, we may
assume c, = 1. In passing, we note that ABSTRIPS [6] assigns different weights

to the sentences Si and gains some direction as a result [47,
The notion of inconsistency applied is derived from standard proof

theory, using modus ponens and universal generalization. In particular, the

Resolution Principle would yield the same notion.

It is the choice of Si and ¢, that concerns us here. First we identify

the Si' Recall that we have a subgoal (goal) R which we would like to use

programs to make true in the initial state. That is, we would like R to be

true, or to find a program B so that wp (8, R) is true, in the goal model.

If the model M is a true representation of the state of the world, then we would
like p (wp(B,R), M) = 0 to mean wp (8,R) is true in the initial state M. Thus
we want no assertion of wp (a,R) to be inconsistent with M. Consequently let 1
Sl,. . ey Sn be the assertions of M. Then p(wp(8,R),M) = 0 if and when
wp (a,R) is not inconsistent with M. Therefore, we wish to j
let Sl,. . .,Sn be the assertions of the initial state, the facts that are
known to be true. L

The choice of ci's are a more difficult problem. However, there are some

heuristics to consider in their choice.

T e el

23
First, if there is a program BL so that for almost any R, Si is consistent

i : with wp(B‘, R), then c should be low. This is because we can apply BL

popeas-vegorve Lo TR

with low expected complications so that Si becomes only a minor problem. On

- the other side, if most of the programs B8 are such that Sj is inconsistent
with wp(B,R) for most R, then Cj should be large. This follows because C

is determined by what complications it presents in the truth of wp(B, R)

LT AN ST W IR 3 7T

The best choice of the criticality values depends on the problem

==y

T

environment, Obviously, the relative importance of aspects of a problem

is a subjective issue, and developing a more formal theory is a topic for

BT

future research.

IV, .4 Application of a pseudometric

Once a pseudometric has been constructed, we may use it to direct the
choice of which program to apply next. In particular, we may define a greedy
strategy, one that chooses the maximum decrease in the pseudometric value
with each program application. If backtracking is available, this is perhaps
as good a method as any. To use the pseudometric to guide the program search,

we must use it as the criteria to judge which program to choose. This

AT R P R

requires evaluating the metric at each time a candidate program is proposed in
the manner described. Once such a metric is set up, it is a tremendous asset,
as it defines the notion of distance to a solution. It should be emphasized
that much more general pseudometrics may be instituted [see example in McAfee

& Whinston 19807 than the one described in this paper. However, a formal notion
of distance to a goal is a pseudometric, and if a machine is ever to act as if

it knew what 'close' means, it must have a measure of distance.

For computers to solve general problems, it is likely that they will have to
simulate human decision making. Despite vast computational power and extreme
speed per computation, computer solutions to general problems are still

unacceptably slow. It is thus of interest that the procedure described in

this paper is analogous to a human method of problem solution, at least in

. b

the abstract. The procedures first checks if there is anything to be done, that

o A

is, if the goal is true currently. Its next step is to consider the possible

W -

alternatives. Analogous to a person, it checks if the alternative (program)

does something potentially useful, by means of its pseudometric intuition,

ot oo < e

{ and whether the preconditions of the alternative are reasonable, using the
weakest preconditions of Dijkstra. Backtracking gives us the geuerality

of these methods, and the pseudometric gives us the means of telling a computer

SR AT TP T X o R e e, TR

As a result, the methods of this paper

what is reasonable and what is not.

provide a new approach to automated problem solving.

v.

Example

The example we provide is similar to that of artificial intelligence

literature. We have a robot in a 2 room suite.

The robot's position

POSITION (x,y) is described by the variables (x,y). There is a window which

is open when V = 1 and shut if V = -1, The variable V is associated with

the predicate "WINDOW (V).”" There is a door between the rooms, which can be

open £ =1 or shut £ = -1, and ¢ is associated with the predicate OPEN.(¢). There

are 3 operators given below.

4 T T | \
|)] !
y 3 n 1 o i 1 _'l_ _
T) :
[| | .
2‘} S o e - :
i] '
L
AN
A f 1 i
1 2 3 4 S 6
X
By OPENWINDOW Precondition: POSITION (0,2)
Addition: WINDOW (1)
Deletion: WINDOW (-1)

32: THRUDOOR Preconditions: OPEN (1) A POSITION (2,1)
Addition: POSITION (4,1)
Deletion: POSITION (2,1)

333 INROOMMOVETO Preconditions: POSITION (xl’yl)A[(x1‘3Ax2‘3)V(x1>3Ax2>3)]
(x2’ y2) Addition: POSITION (x2’y2) oo
Deletion POSITION (xl’yl) ‘

- e s ———— e ey 2 1{' -

B S0

O AR e S, e U T b AU T TP ATBR_f 8 e 1 T

Sy
DY

e " VoL -
gt ; adn i bk aakadic bt Cainbrt oy

The corresponding GC programs are

al: (x=0 A y=2)?;V « 1 U W(x=0 A y= 2)7; ABORT

32: @=L Ax=2 Ay=1)?; x ¢ 4; y &1 T(4=1 A x=2 A y=1)?; ABORT

>3) 1! ABORT

By: [(x<3 A xzs3) vV (x>3 A x2>3)]? Xex5 ¥ Y, U (xs3 A x253) v o (x>3 A x,

We denote the state changing parts of Bi by Bi’ i.e.,

~

B. =Vel, stxt-lo;yo-l, 33sx+-w;y0-2-

1

Our goal for this example is the following model Ro:
POSITION (6,0) A WINDOW (1)

or, in DL notation, x =6, y =0, V = 1.

Our initial state, MI’ in this example is:

POSITION (0,4) A WINDOW (-1} A OPEN (1)

That is, x =0, y = 4, V= -1 and £ = 1.

According to the method of this paper, to calculate the pseudometric we
take the sentences of the initial model, negate them to form the critical

sentences Sl’ « « «s S, and assign them criticality values Cpe -+ s We shall
n

do this with the sentences V= -1 and ¢ = 1, however, we shall introduce an
interesting twist on the sentence x = 0 A y =4 . Essentially this will involve
using the broken euclidean distance metric as the measure of distance.

Let S1 be J(V= -1) and 32 be 7(£ =1). Let the criticality values associated with

S . . .
81 and both be unity. In addition, define <y (xl, Y1 Xg» y2)

2

2 2
%1 - x2) + (yl - yz) If (xls3 A x253) v (x1>3 A x2>3\

2 2
cq (xl, Y1» %y yz) = Vv(x1 -4)° + (y1 -1 If (xl>3 A x253)

+2 + \x, 2

2
x2-2) +(y2-1)

It is readily verifies thec , gives the broken Euclidean distance metric for

3

the distance between (x) and (x). (see diagram 2)

2° V2
2

1’ yl
Now we define, for two models Ml and M
1 2
= +
pM™, M) Xci c3(x1.y1, Xy yz)
l€ry,

. 2
) is true in M1 and POSITION (x2, y2) is true in M°,

where POSITION (xl, Y,

e, measures the distance, which is a metric and hence a pseudometric, to one

! 3
V position from another.

T

- —— o e —

Diagram..2 Distance through the door.

distance from (1,3) to (5,4) is the distance from (1,3) to (2,1)
' 2 2

dkl-Z)z + (3.1)2 u\[-S) plus the distance from (4,1) to (5,4) (V{h-S) + (1-4)"= 1

10) plus the distance from (2,1) to (4,1}, or 2.

)

In this example, the candidate programs are chosen fortuitously. The actual .o~
execution would require several backtrackings. The point of this example

is to illustrate the use of weakest preconditions and pseudometrics.

«
-

Tt N .R

Observe, as V is disagreed on

p(MI, Ro) 52 cy +c3 =c, +c3(0, 4, 6, 0)
ier

a1 +Ve-0? + 002 + 2 +Vi0-22 + 4-1>2
=3+ \5+ V13,

Any STRIPS type program Pp has a special form, which is given by P?;8 { 7P7;ABORT.
For any sentence S, wp(#,S) also has a special equivalent form, as we now show.
wp(B,S) = wp(P?;@ U "IP?ABORT, S) =

(Po wp(é, $)) A (3P = wp(ABORT, S))

Bl

(P v wp(B,S)) A (P v false) = (1P v wp(B,S)) A P =
P A wpiB,S).
We shall use this simple reduction throughout the example.
Let 83 be our first candidate program. It is a natural choice as the preconditions
of 31 and 62 are not satisfied. The algorithm yields:
r = =
| = wP(By, Ry = [x<3 A X, $3) vV (x>3Ax,> 3)] A wp(By, R)
E,[(6s3/\xzs3) v(6>3/\x2>3)}/\wp(xo-x2; Y & Yy RO)

) A WINDOW (1), as 6 £ 3.

= [xz > 3) AV‘POSITION (x2, Y,
2

c 2 2 2
P(MI, Rl) giéi' i +V(0-2)" + (4-1)" + 2 +\/(4-x2) + (1-y2) .

minimizing p(MI, Rl) with respect to X5 Yy yields X, = 4 and Yy = 1

and R1 = Position (4, 1) A WINDOW (1)

and hence p(Mr Rl) =3 +\/’1-j3_, a distinct gain,

The preconditions of 51 are not satisfied, and the use of 53 will not provide

any reduction of p, so we let 62 be our next candidate program. Then we have:

i)

stwp(uz, Rl)—(zsl/\x=4/\y-1)/\wp(82, Rl)
(x=2Ay=1D Awp (x¢4; ye 1, POSITION (4, 1) A WINDOW (1))

= POSITION (2, 1) A WINDOW (1). We have

2 2
p(nl, Rz) - cl te, = 1 +\/(O-2) + (4-1)" =1 +V—1_3,

again an improvement.

badl |
T —

RN,

The next program we check is B3.

R3 = wp (93’R2) =x = x, Ay = Y, AX<3IAV =1

2 2 4 2 ., 2
P(R3, MI) = 1 +V(0-1(2) + (4-y2) = 1 +\/ 9 + (4-y2)

we could minimize this, but it would not deal with opening the

window. Consequently the machine would make an error here (going to
(0,4)). At this point p = 1 and the machine would attempt to open the
window by applying the operator By- This reveals the position problem as
we see

R, = WP(BI’R3) = (x=0Ay=2)A wp(al,R3) ‘

x=0Ay=2 A (x= X, Ay = y2) AV =-1

zx=0Ay=2AV = -1 Thus the wp's direct x2'= 0 A y, = 2

, MI) =‘\40 - 0)2 + (2 - 4)2 = 2, an improvement,

p(RA

Finally, we operate 33 once more

R. = (,, R = X = = 8
5 (3 4) X = X3 AY =¥y A wp(B3, R4)

n

2 Ax<3]A(W=-1

[

B

n
wae
>

y=ygalx=0nay

]

= x = xq Ay =y3AXS 3AV -1

Minimizing p(R, M =Vio-xp? + (b - y)7

subject to Xq <3
yields X3 = O,y3 = 4 and p(RS’ MI) = 0,
p(RS, MI) = 0 means the problem is solved by the program sequence
(8,585 Bys By 8,).
There are two significant characteristics displayed by this example.

First, the notion of a pseudometric admits such measures as Euclidean dis-

tance. One 1is not restricted to such pseugomettics as discussed in ’

A |
section 4, and we may use ordinary measures to measure the difference of
models.

Perhaps more important, the pseudometric may be used to guide

oy —es. ¢

VI. Conclusion and research topics

29

the choice of operators where an operator is a schema. In both the first

and third application of 83, we used minimization of the pseudometric

as the choice function for the values (x), the point from which we

1°Y1

were moving. As we saw in the second application of Bg this is not an

PO e e v TR

ideal guide (because it tells the machine to make easy gains) but it is a

guide to the choice of values for a schema. Used in conjunction with the

preconditions of the next program, it becomes a very useful guide.

Backtracking is employed to handle cases where it fails to guide impeccably.
vOne final point, some pseudometrics arise naturally on a space of

models. In our example, the distance measurec, 1is an appropriate

3
measure due to considerations resulting from Euclidean space, and the
existance of a barrier. Others, such as the measure of the value of a
window discrepancy, are arbitrary. Their value may rest on the judgement
of the individuals who initially describe the program.

In this example we chose the programs so that they worked. However,
if we are faced with a problem not contrived as an example, we could
use the pseudometric as a guide to problem solution. If the other
programs were tried and then checked via the pseudometric for
improvement, we would find that generally the best program would also

minimize the pseudometric. This occurs because the pseudometric values

were improvements and the best program generally results in improvement.

In this paper, several extensions of problem solvers are examined. 1
Specifically, we looked at problem solving in a larger language than
first order calculus, one that incorporates the programs which form the

nucleus of problem solving systems. Next, a method of enbedding a portion

T

of this language in the first order calculus was examined. We proposed a problem

CE LY. TR ety T 3

solving system that extends STRIPS and the Resolution Principle. We then formalized

the notion of distance in models and showed how this may be used to direct the search of

e ant B b i, FU g e A GG a1 PR S A

the machine for a solution.
Perhaps the most important research topic is the inclusion of program
union and iteration in the program synthesis algorithm. These are

important methods of combining programs, and present some complications

in their inclusfon. Lemma 2.11 shows how union may be profitably included;
However, the correct use of this Lemma is difficult to incorporate into the
algorithm, Iteration presents a tricker problem, as the weakest pre-
condition is an infinite disjunction. Some promising research

suggests that iterations could be called for when induction is called

for. However, the problem of when to use it still remains.

With regard to pseudometrics, an important line of inquiry is the
optimal utilization of the measure and minimizing the cost of evaluation
of the pseudometric. Moreover the choice of the criticality values still
remains open. Effective use of pseudometrics, and indeed, efficient

decision procedures, requires additional research on this topic.

31

{17 Dijkstra, Edsger W. "Guarded Commands, Nondeterminacy and Formal
Derivation of Programs, '"Communications of the ACM, Vol. 18
L No. 8, (1975) pp. 453-457.

[2) Fikes, Richard E. and Nils J. Nilsson. ''STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving,' Artificial
, Intelligence 2, 1971 pp. 189-208.

[3) Harel, D., First-Order Dynamic Logic, Lecture Notes in Computer
Science, Vol. 68, Springer-Verlag, 1979.

[4] McAfee, R.P. and A.B. Whinston. '"A Formal Model of Problem Solving,"
Journal of Policy Analysis and Information Sciences, forthcoming
April 1980, Vol. 4, No. 2

Robinson, J.A. "A Machine Oriented Logic based on the Resolution
Principle,* Journal of the ACM, Vol. 12, No. 1 (1965) pp. 23-41.

Sacerdoti, E.D, "Planning in a Hierarchy of Abstraction Spaces,"
Artificial Intelligence S5, 1974 pp. 115-135,

e RS

